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ABSTRACT

Precipitation variability significantly influences the heavily populatedWest Coast of theUnited States, raising

the need for reliable predictions. We investigate the region’s short- to extended-range precipitation prediction

skill using the hindcast database of the Subseasonal-to-Seasonal Prediction Project (S2S). The prediction skill–

lead time relationship is evaluated, using both deterministic and probabilistic skill scores. Results show that the

S2S models display advantageous deterministic skill at week 1. For week 2, prediction is useful for the best-

performing model, with a Pearson correlation coefficient larger than 0.6. Beyond week 2, predictions generally

provide little useful deterministic skill. Sources of extended-range predictability are investigated, focusing on

El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO). We found that periods of

heavy precipitation associated with ENSO are more predictable at the extended range period. During El Niño
years, Southern California tends to receive more precipitation in late winter, and most models show better

extended-range prediction skill. On the contrary, during La Niña years Oregon tends to receive more pre-

cipitation in winter, with most models showing better extended-range skill. We believe the excessive pre-

cipitation and improved extended-range prediction skill are caused by themeridional shift of baroclinic systems

as modulated by ENSO. Through examining precipitation anomalies conditioned on the MJO, we verified that

active MJO events systematically modulate the area’s precipitation distribution. Our results show that most

models do not represent the MJO or its associated teleconnections, especially at phases 3–4. However, some

models exhibit enhanced extended-range prediction skills under active MJO conditions.

1. Introduction

The West Coast of the United States receives a ma-

jority of its precipitation during the cold season (from

October toMarch). This precipitation supports the water

requirements of approximately 15.7% of the nation’s

population (OECD 2018), generates approximately 52.6%

of thedomestic hydroelectricity (Uría-Martínez et al. 2017),
andwaters approximately 21.7%of the country’s irrigated

farm land (Vilsack and Reilly 2013). Occasional extended

wet or dry periods, which are strongly linked to the

presence or absence of winter storms, threaten the area’s

ecological and economic security. Additionally, extremes

of droughts and floods can end or occur abruptly, posing

challenges to public safety and many other aspects of

the society. To better plan for and respond to both the
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beneficial and destructive impacts of the precipitation

variations, it is imperative to understand the accuracy and

extent of the predictions.

There has been substantial progress in day-to-day

precipitation predictions in recent decades (Bauer et al.

2015). The skill improvements are largely due to 1) more

realistic estimations of initial atmosphere conditions and

2) improvements in the ability of numerical prediction

models to simulate the dynamics and physics of the

weather systems.While these advances have led to improved

forecasts at longer lead times, it is also true that small-

scale errors roughly double in 1–2 days, leading to a rapid

loss of useful skill within about 2 weeks (Lorenz 1965).

Provided with loosened requirements on spatial

temporal resolutions, deterministic and ensemble-based

forecasts occasionally provide useful prediction beyond

the synoptic time range (Weber 2015), which has the

potential for significant economic value. Generally, the

skill depends on 1) the existence of sources of predictability

at corresponding temporal ranges and 2) the model’s

ability to represent the dynamics associated with these

modes of variability (National Academies of Sciences,

Engineering, and Medicine 2016). For regions with dis-

tinct dynamics and sources of predictability, the pre-

diction skill at the extended range is reported to be

different (Zhu et al. 2014; Wheeler et al. 2017).

Most winter precipitation events along theWest Coast

are driven by moisture convergence associated with

passing extratropical cyclones (Bao et al. 2006; Dacre

et al. 2015). At short to medium ranges, due to the co-

herent life cycle of cyclone events, cyclogenesis is highly

predictable. At the extended range, the prediction skill

decreases rapidly (Kumar et al. 2011; Zhu et al. 2014;

Robertson et al. 2015), because of the chaotic nature of

the baroclinic systems. Teleconnections between extra-

tropical cyclone activities and tropical disturbances offer

the potential for extending forecast lead time. For in-

stance, semiperiodic tropical variations, including El

Niño–Southern Oscillation (ENSO) and the Madden–

Julian oscillation (MJO), often trigger quasi-stationary

Rossby wave trains that propagate into midlatitudes,

which in turn influence the precipitation distribution

(Hoskins and Karoly 1981; Sardeshmukh and Hoskins

1988; Matthews 2004; Hoskins 2013). Such effects are

expected to be more significant for the West Coast,

given its proximity to the Pacific and the associated

sources of potential predictability (Weber 2015; Baggett

et al. 2017; Mundhenk et al. 2018).

While much research focuses on explaining tele-

connections (Whitaker andWeickmann 2001;Mundhenk

et al. 2018; Mamalakis et al. 2018), it is important to keep

investigating how forecasts of opportunities are ex-

pressed in general circulation models (GCMs), since

GCMs remain the most important tool for testing po-

tential sources of predictability. Numerous studies have

evaluated the ability of GCMs to predict intraseasonal

variability at global and regional scales (Neena et al. 2014;

Vitart 2014; Li and Robertson 2015; Tian et al. 2017;

Weber andMass 2017).However, a systematic evaluation

of the prediction skill for precipitation at the short to

extended range along the West Coast has not been

completed.

The purpose of this study is to investigate short- to

extended-range precipitation prediction skill for the

West Coast during its rainy season. In particular, we

explore the impact of the leadingmodes of intraseasonal

to seasonal variability on the distribution and prediction

skill of precipitation. Our intention is to use the results

as a baseline for follow-on investigations of seamless

weather and climate prediction.

The evaluation is based on extended-range retro-

spective forecast (hereafter referred to as hindcast) ex-

periments developed by 11 operational centers and hosted

by the World Weather Research Programme (WWRP)–

World Climate Research Programme (WCRP) Sub-

seasonal to Seasonal (S2S) Prediction Project science

plan (Vitart et al. 2017). The abundance of hindcast cases

and model diversity offer an unprecedented opportunity

for investigation of the potential predictability and pre-

diction skill of precipitation. Our specific experiments are

as follows:

1) Evaluate the prediction skill for West Coast pre-

cipitation during the cold season in each GCM on

time scales from the short range to extended range.

2) Investigate the influence of intraseasonal and sea-

sonal variability on precipitation prediction skill in

the GCMs at the extended range, with emphasis on

ENSO and the MJO.

The rest of the paper is organized as follows. In section 2,

we introduce the data used in this study. Section 3 de-

scribes the methodology, including evaluation strategy

and skill scores. The evaluation results are presented in

section 4. Section 5 focuses on the impact of ENSO and

the MJO. A discussion and conclusions are provided in

section 6.

2. Data and materials

a. Study area

The study area is restricted to the heavily populated

coastal region of the western United States, which in-

cludes California, western Oregon, and western Wash-

ington (to the west of 1208W, as roughly divided by the

Cascade Range). The western Cascade Range is con-

sidered separately from the eastern range due to their
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distinct synoptic and precipitation regimes (Bond and

Vecchi 2003). The proximity of this region to the neigh-

boring Pacific Ocean suggests that it is likely to have

significant predictability on the extended range. Consid-

ering the climate variation within the study area, we

further divide the region into four subdivisions, namely

Southern California (SCA), Northern California (NCA),

western Oregon (OR), and western Washington State

(WA). The study area is highlighted in Fig. 1.

b. CPC Unified Gauge-Based Analysis of Daily
Precipitation

TheClimate PredictionCenter (CPC)UnifiedGauge-

Based Analysis of Daily Precipitation database (Xie

et al. 2007) is used as ‘‘ground truth’’ for assessing the

performance of the GCMs. This database is constructed

by merging various precipitation information sources,

including gauge observations, satellite estimates, and nu-

merical model predictions. It provides daily precipitation

records covering the contiguous United States from 1948

to 2017 with spatial resolution of 0.208 3 0.258. Data for

the West Coast in cold season (from October to March)

are considered. The data are spatially averaged to a 1.58
latitude 3 1.58 longitude grid to match the resolution of

the GCM hindcast precipitation products.

c. Climate indices

The leading patterns of intraseasonal to interannual

variability considered in this study areENSOand theMJO.

ENSO is measured by the Niño-3.4 index (Trenberth and

Stepaniak 2001), which is the mean monthly sea surface

temperature anomalies (SSTA) averaged over 58S–58N,

1708–1208W. The MJO is quantified by the Real-Time

MultivariateMJO Index (RMM), which consists of the two

leading principal components (PCs) of the field that com-

bines average outgoing longwave radiation, zonal wind at

850hPa, and zonal wind at 200hPa from 158S to 158N
(Wheeler and Hendon 2004).

d. S2S hindcast database

As a key component of the S2S Prediction Project, the

S2S hindcast database offers a large number of hindcast

cases to investigate the forecast skill and potential pre-

dictability at the extended time range. The database

consists of extended-range hindcast cases implemented

by 11 operational centers:

d The Australian Bureau of Meteorology (BoM; Alves

et al. 2003)
d The China Meteorological Administration (CMA;

Wu et al. 2014)
d The European Centre for Medium-Range Weather

Forecasts (ECMWF; Vitart et al. 2008)
d The Environment and Climate Change Canada

(ECCC; Gagnon et al. 2013)
d The Institute of Atmospheric Sciences and Climate of

the National Research Council (ISAC-CNR; Malguzzi

et al. 2011)
d The Hydrometeorological Centre of Russia (HMCR;

Courtier and Geleyn 1988)
d The Japan Meteorological Agency (JMA; JMA 2013)
d The Korea Meteorological Administration (KMA;

Best et al. 2011)

FIG. 1. (a) The geographic map of the West Coast. The elevation data are provided by United States Geological

Survey (Gesch et al. 2002). The four subdivisions, namely Southern California (SCA), Northern California (NCA),

western Oregon (OR), and western Washington State (WA), are outlined with colored polygons. (b) Geoposition

of the study area in a larger scale. (c) The monthly mean precipitation rate for the four subdivisions, based on the

CPC precipitation dataset. The boreal winter (October–March) precipitation ratio is labeled.
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d TheMétéo-France/Centre National de Recherche Me-

teorologiques (Météo-France; Voldoire et al. 2013)
d The National Centers for Environmental Prediction

(NCEP; Saha et al. 2014)
d The Met Office (UKMO; Wood et al. 2014)

Model configurations are listed in Table 1.

For each hindcast case, each model is initialized with

realistic estimates of the atmosphere, land surface, and

ocean states. After initialization, the model iteratively

predicts the weather for a preset extension without any

boundary constrains. It should be noted that there

are large differences between the models when one

considers the initialization strategy, dynamics core,

parameterization schemes, resolution, ensemble gen-

eration scheme, hindcast extensions, ocean and sea ice

coupling, and so on. This diversity may offer an op-

portunity to determine best practices for subseasonal

predictions (Vitart et al. 2017;White et al. 2017). In this

study, daily precipitation hindcasts for the West Coast

during the cold season (from October to March) were

used for assessment.

3. Methodology

a. Evaluation strategy

A basic fact associated with precipitation prediction

is that the position, timing, and intensity of the pre-

cipitation forecast diverge from reality as forecast lead

time increases. A gridscale, day-to-day deterministic

prediction generally holds little efficacy beyond the

synoptic range. However, predictions might still have

skill if assessed at regional scales or over a range of

lead times.

Given this, we implemented evaluations at both strin-

gent and loosened spatial temporal scales. The stringent

scale evaluation refers to evaluating each grid’s day-

to-day prediction skill. In addition, the evaluation is

also carried out for regional average predictions and

predictions that span specific windows of lead time. The

regional average predictions are calculated by averaging

predictions within the geographical divisions shown in

Fig. 1. Small deviations in predicting cyclone trajectories

and their associated precipitation positions are likely to

be averaged out in this way. Windows of lead time are

defined following Zhu et al. (2014): For a lead time of

n days, the subsequent n days average precipitation pre-

diction is evaluated. Thus, an ndnd evaluation refers to

evaluating the prediction of the mean precipitation rate

from the (n 1 1)th day to the (2n)th day. This strategy

offers a fair comparison across a range of time scales from

the short range to the extended range, since the deviation

in predicting the timing of precipitation at longer lead

times will be averaged out for the wider evaluation win-

dows. Using different spatial and temporal scales, we

carry out the following four experiments:

1) Daily grid-point-scale evaluation: Evaluate the nth

day prediction skill at each grid point, n ranges for

the entire period of forecast. The overall skill for

each climate division is calculated by averaging skill

scores for all the grid points within this division.

2) Daily regional-scale evaluation:Evaluate daily regional

average forecasts for each geographical division.

3) Variable temporal windows, grid-point-scale evalu-

ation: Evaluation is carried out at each grid point for

various windows of lead time, following the strategy

of Zhu et al. (2014).

4) Variable temporal windows, regional-scale evaluation:

For each geographical division, the regional average

precipitation forecasts are evaluated for variable win-

dows of lead time.

b. Skill metrics

1) DETERMINISTIC SKILL METRICS

Two deterministic skill metrics, namely the Pearson

correlation coefficient r and the Nash–Sutcliffe model

TABLE 1. Model configurations in the S2S hindcast database.

Model Time range (days) Resolution Hindcast coverage Hindcast frequency Ensemble size

BoM 0–62 T47L17 1981–2013 6 per month 33

CMA 0–60 T106L40 1994–2014 Daily 4

ECCC 0–32 0.458 3 0.458 L40 1995–2014 Weekly 4

ECMWF 0–46 Tco639/319 L91 Past 20 years 2 per week 11

HMCR 0–61 1.18 3 1.48 L28 1985–2010 Weekly 10

ISAC-CNR 0–32 0.758 3 0.568 L54 1981–2010 Every 5 days 1

JMA 0–33 Tl479/Tl319L100 1981–2010 3 per month 5

KMA 0–60 N216L85 1991–2010 4 per month 3

Météo-France 0–32 T255L91 1993–2014 2 per month 15

NCEP 0–44 T126L64 1999–2010 Daily 4

UKMO 0–60 N216L85 1993–2015 4 per month 3
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efficiency coefficient (NSE; Nash and Sutcliffe 1970),

are used to assess the performance of the ensemble-

mean forecasts. Their formulas are given as follows:

r5
E[(P

obser
2P

obser
)(P

simu
2P

simu
)]

s
Pobser

s
Psimu

, (1)

NSE5 12
�(P

obser
2P

simu
)2

�(P
obser

2P
obser

)
2
. (2)

Here Pobser denotes mean value of the precipitation

observations and Psimu denotes the ensemble mean

prediction. Operator E denotes the expectation taken

over all available samples, s denotes standard deviation,

r quantifies the linear correlation, and NSE quantifies

the relative magnitude of the mean square error com-

pared to the climatology variance.

2) PROBABILISTIC SKILL METRICS

Generally, forecasts beyond 10 days are no longer de-

terministic (Vitart 2014); each ensemble member from

the ensemble forecast system offers useful information in

predicting the real-world weather evolution. To account

for the information provided by each ensemble member,

we also evaluate the probabilistic prediction skill based

on all ensemble members. Here, the relative operating

characteristics (ROC) score and the continuous ranked

probability score (CRPS) are adopted.

The ROC score provides a complete summary of the

hit ratio and false alarm ratio for different observation

intervals. To calculate the ROC score for each model,

we construct a sample space that consists of all ensemble

members starting at different dates. For instance, for

ECMWF, there are 1482 hindcast starts; each start has

11 ensemble members, so together we have 1482 3 11

samples. For this sample space, the hit ratios and false

alarm ratios for observation intervals of (x, ‘) (here x is
set as 10 deciles of observation range) are calculated and

scatterplotted (hit ratio on the vertical axis and false

alarm ratio on the horizontal axis; Fawcett 2004). The

points construct the ROC curve, which should be above

the 1:1 line if the model has positive skill. The ROC

score is defined as the area under the ROC curve. An

ROC score closer to 1 indicates higher skill. A no-skill

forecast has an ROC score of 0.5 (Vitart 2004). It should

be noted that the ROC curve and ROC score are con-

structed by sorting the elements of the joint distribution

of observations and predictions. Thus, the actual nu-

merical values are immaterial, and the final score is in-

sensitive to prediction biases (Wilks 2011). The score

reflects the potential performance that can be achieved if

the forecasts were correctly calibrated. We acknowledge

that there are considerable biases that are introduced

by the precipitation-related parameterization schemes.

However, since the objective of the paper is to investigate

the potential precipitation prediction skills achieved by

the dynamic modules of the models, we believe apply-

ing the ROC is justified.

The CRPS measures the ensemble forecast skill by

comparing the probability distribution of the ensemble

predictions and the observations (Hersbach 2000). As is

shown in Fig. 2, it is represented as the integrated squared

difference between the cumulative probability distribu-

tion function (cdf) of the forecasts and the observation.

To evaluate the general performance of the ensemble

forecast systems, we apply themean CRPS (CRPS). The

formulas are given as follows:

CRPS5
1

n
CRPS5

1

n

ð
R

[F
obser

(x)2F
simu

(x)]2dx

’
1

n
CRPS

^
5

1

n

ð
R

[F
obser

(x)2 F̂
simu

(x)]2dx . (3)

Here n represents the ensemble forecast case count, and

Fobser (Fsimu) is the cdf of the precipitation observation

(simulation) as shown in Fig. 2; F̂simu could be estimated

by assigning equal probability to each ensemblemember.

4. Evaluation results

a. Deterministic skills

1) PEARSON CORRELATION COEFFICIENT

The estimated Pearson correlation coefficient r be-

tween ensemble mean predictions and observations for

the four experiments is displayed in Fig. 3.

For day-to-day evaluation (first two columns in Fig. 3),

as is expected, each model shows a rapid decrease of r

skill with forecast lead time. We labeled the extent to

which model’s r skill is greater than 0.2 (this threshold is

subjective and should be customized regarding specific

application purposes). Generally, because of the model

performance differences, r falls below 0.2 within 8–15 days

(10–16 days) for experiment 1 (experiment 2). A com-

parison between columns 1 and 2 shows that with a lead

time of as much as 2 weeks, regional average predictions

generally have higher r skill compared to gridscale pre-

dictions. The skill improvements through spatial averag-

ing aremost obvious for SCA, which is attributable to the

uneven precipitation distribution for this region.

For the temporal interval evaluation (experiments 3

and 4 in the last two columns of Fig. 3), we also give the

statistics of best and mean performances at different

windows of lead time in Table 2. Within the synoptic
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range, the day 2 (1d1d), day 3–4 (2d2d), and day 5–8

(4d4d) r skills are generally of the same order of mag-

nitude (above 0.6 at grid scale and 0.7 at regional scale).

This indicates that the decrease of prediction skill as

lead time increases is compensated by the expanding of

evaluation windows following the ndnd temporal aver-

aging strategy. The JMA, KMA, ECCC, and ECMWF

models have the best performance at this temporal

range. It is important to note that these models are of

higher resolution compared to the others. For week 2

(1w1w), there is large variability in the models’ r skills.

The best-performing model (ECMWF) achieves r skill

of approximately 0.5 at grid scale and 0.6 at regional

scales. The average performance for all models is of the

order of 0.4 for both grid and regional scales. Beyond

2 weeks, the models generally show little usable skill.

However, it is noteworthy that some models show un-

expectedly good performance at this time range, such as

BoM for SCA and HMCR for WA.

The results above suggest that models’ r skills are

distinct regarding different regions and forecast lead

time. For the same region and lead time, the informative

predictable rangemay differ by up to 6–7 days due to the

model performance differences. The huge sample size of

the S2S dataset offers opportunity to test the significance

of model performance differences at critical forecast

lead time periods. The results would benefit model se-

lections for practical forecasts andmultimodel ensemble

predictions. Below we carry out the significance test on

models’ r skill differences for the day 2, day 7, week 2,

and week 3–4 periods. These periods are selected since

they represent critical lead time and scales in weather

forecasts. To perform the test, we first applied the Fisher

r-to-z transformation (Fisher 1921) on the r estimations.

Later, we applied significance test on the z statistics to

assess the significance of the difference between the

models’ r skills. Results are shown in Fig. 4.

For the day 2 forecast (row 1 in Fig. 4), ECCC,

ECMWF, ISAC-CNR, JMA, and KMA generally

show significant advantages over the other models,

while the BoM and CMA models show significantly

lower skill. For the day 7 forecast (row 2), the ECCC,

ECMWF, JMA, and KMA models still lead the per-

formance, while ISAC-CNR loses its advantage over

most models. This might be because the ISCA-CNR

model is applying deterministic rather than ensemble

forecasts here. For week 2 forecast (row 3), the best-

performing models are ECCC, ECMWF, and JMA.

ECMWF shows significant advantage over all the

other models except for the WA prediction when

compared against JMA. For the week 3–4 forecast

(row 4), although there is essentially no useful r skill,

FIG. 2. Explanation of theCRPSusing a six-ensemble-member forecast case (x1, x2, . . . , x6).

The red (black) line represents the theoretical (empirical) cdf of the precipitation forecast,

which is denoted as Fsimu (F̂simu); the blue line represents the cdf of the observation Fobser.

Since the observation is deterministic, Fobser is in theHeaviside function form; i.e., if x, xobser,

Fobser(x)5 0, otherwise Fobser(x)5 1. The CRPS is defined as the integrated squared differ-

ence (shaded area) between the cumulative distribution function of the forecasts and the

observations. The definition and estimation method are given on the bottom right of the

figure.
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the ECMWFmodel still shows advantage over the rest

of the models.

2) NASH–SUTCLIFFE MODEL EFFICIENCY

Generally a large value of r relates to positive NSE,

which indicates that the model outperforms the base-

line of climatology. However, evaluation of the original

precipitation ensemble mean predictions shows nega-

tive NSE in most experiments. Given this discrepancy,

we performed a linear bias correction for each scale.

Results after the correction are shown in Fig. 5. The best

and mean performances are given in Table 3.

Overall, the NSE results are similar to those shown

earlier. Daily-scale NSE reaches 0.2 within approxi-

mately 5–10 days. Models lose their advantage over

climatology after approximately 2 weeks (NSE ’ 0).

Through spatial averaging, short-range NSE could be

improved by 0.2, and the range of NSE. 0.2 is extended

by 1 day.

Considering evaluations at different windows of fore-

cast lead time, for day 2 and day 3–4 predictions, the

JMA, KMA, and ECCC models still have the best per-

formance. For the medium range, ECMWF achieves the

largest NSE. Week 2 predictions are of considerable

value, with NSE around 0.25 at grid scale and 0.35 at

regional scale. Beyond two weeks, skills decrease rapidly.

b. Probabilistic skill

1) ROC SCORE

This section evaluates the models’ probabilistic skill

using the ROC score. To illustrate the idea of ROC, we

draw the ROC curves for ECMWF regional predictions

in Fig. 6. Each labeled point represents the hit ratio (HR)

and false alarm ratio (FAR) for a corresponding interval

of precipitation observations. For instance, the point la-

beled 0.9 represents the (HR, FAR) of prediction for

the (P90%, ‘) interval, where P90% represents the 90%

FIG. 3. The Pearson correlation coefficient between the ensemble mean of precipitation predictions and the observations for the four

experiments defined in section 3. The evaluation results for the four divisions are shown in rows 1–4. The columns represent different

experiments. (first column) The daily grid-point-scale evaluation results, (second column) the daily regional-scale evaluation results,

(third column) the variable temporal windows, grid-point-scale evaluation results, and (fourth column) the variable temporal windows,

regional-scale evaluation results. For the first and second columns, the extents to which r . 0.2 for different models are labeled.
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quantile of observed precipitation. The farther a point is

above the 1:1 line, the more likely a P.P90% forecast is

true. As is shown, points in all subfigures here are above

the 1:1 line, showing a larger HR than FAR at different

evaluating thresholds for all scales. Small precipitation

cases generally appear on the top-right part of the ROC

curve (larger HR but also larger FAR), while large pre-

cipitation cases appear on the bottom-left part of the

ROCcurve (smallerHRbut also smaller FAR). For short

to medium range, the ROC curves of day 2 (1d1d),

days 3–4 (2d2d), and days 5–8 (4d4d) show considerable

overlap. The ROC curve for week 2 (1w1w) predic-

tion falls below the previous three cases. For weeks 3–4

(2w2w) and weeks 4–6 (3w3w), again the curves overlap,

and they fall below all the previous cases. TheROC score

is defined as the area below the ROC curve, which sum-

marizes the probabilistic prediction skill for different

evaluating intervals. The scores are given at bottom right

in each subfigure. The days 3–4 prediction achieves

a slightly better ROC score compared to day 2 and days

5–8. The week 2 (1w1w) prediction achieves a ROC score

above 0.7 in all divisions. For weeks 3–4 (2w2w) and

weeks 4–6 (3w3w), the score is around 0.6, showing better

performance than random guess.

Based on this same approach, we calculated the ROC

scores for all models in different evaluation experi-

ments. Results are shown in Fig. 7. For day-to-day

evaluation (first two columns), we labeled the extent

to which the ROC score is larger than 0.6 (again, this

threshold is subjective and should be adjusted if nec-

essary). Generally, the daily ROC scores begin to

fall below 0.6 in the second week. They reach 0.5 at

approximately 20 days, which means that beyond 20

days day-to-day estimations show no advantage over

climatology.

Considering evaluations at different windows of lead

time (last two columns in Fig. 7), for short to medium

range, the best-performing models achieve ROC scores

above 0.85 for day 2 (1d1d), days 3–4 (2d2d), and days

5–8 (4d4d). For week 2, the ROC score is around 0.65

for grid scale and 0.7 for regional scale. Models still

hold positive probabilistic prediction skills beyond

week 2. The best and mean performances are sum-

marized in Table 4.

2) CONTINUOUS RANKED PROBABILITY SCORE

Compared to the previous skill metrics of r, NSE, and

the ROC score, which are dimensionless and roughly

bounded within certain ranges, the CRPS is of the same

dimension as the predictand (Hersbach 2000; Vogel

et al. 2018); also, it has a lower bound of 0 but is not

restricted by an upper bound. Because of these charac-

teristics, evaluations using CRPS at different spatio-

temporal scales are sensitive to the distribution variation

of the predictand. Thus, the results for difference scales

cannot be compared directly. Given this deficiency, we

do not present the evaluation results here, but show

them in the online supplemental material. The in-

formation and implications of the evaluation are dis-

cussed in the following section.

For the day-to-day evaluation, as can be expected, all

models show increase of CRPS with forecast lead time

until CRPS becomes relatively steady after approxi-

mately 2 weeks. Compared to the evaluation results

using r, NSE, and the ROC score, the CRPS-forecast

lead day curves show considerable oscillation. By ex-

amining the mean precipitation rate on different fore-

cast lead days, we confirmed that the oscillations can be

attributed to the variation of precipitation rates on these

days. Considering the model performance differences,

TABLE 2. Correlation coefficient of precipitation predictions at temporal interval scales.

Scale

SCA NCA OR WA

Best Mean Best Mean Best Mean Best Mean

Day 2 grid 0.71 (JMA) 0.62 0.7 (KMA) 0.63 0.71 (JMA) 0.59 0.73 (JMA) 0.62

Day 2 regional 0.88 (JMA) 0.76 0.83 (KMA) 0.74 0.82 (JMA) 0.71 0.85 (JMA) 0.76

Day 3–4 grid 0.78 (KMA) 0.69 0.78 (JMA) 0.7 0.74 (JMA) 0.66 0.78 (JMA) 0.7

Day 3–4 regional 0.88 (KMA) 0.81 0.86 (JMA) 0.79 0.84 (JMA) 0.76 0.89 (ECCC) 0.81

Day 5–8 grid 0.72 (Météo-France) 0.62 0.75 (ECMWF) 0.63 0.7 (ECMWF) 0.58 0.71 (ECMWF) 0.6

Day 5–8 regional 0.82 (ECMWF) 0.73 0.83 (ECMWF) 0.7 0.79 (ECMWF) 0.67 0.81 (ECMWF) 0.69

Week 2 grid 0.52 (ECMWF) 0.43 0.56 (ECMWF) 0.42 0.5 (ECMWF) 0.38 0.5 (ECMWF) 0.38

Week 2 regional 0.62 (ECMWF) 0.5 0.61 (ECMWF) 0.47 0.58 (ECMWF) 0.44 0.58 (ECMWF) 0.45

Week 3–4 grid 0.3 (BoM) 0.22 0.33 (ECMWF) 0.22 0.29 (Météo-France) 0.2 0.29 (ECMWF) 0.22

Week 3–4 regional 0.35 (ECMWF) 0.26 0.38 (ECMWF) 0.25 0.35 (Météo-France) 0.24 0.32 (ECMWF) 0.26

Week 4–6 grid 0.35 (BoM) 0.26 0.32 (ECMWF) 0.2 0.25 (ECMWF) 0.19 0.32 (ECMWF) 0.26

Week 4–6 regional 0.38 (BoM) 0.29 0.37 (ECMWF) 0.24 0.33 (ECMWF) 0.24 0.38 (BoM) 0.31

Week 5–8 grid 0.41 (BoM) 0.32 0.28 (HMCR) 0.23 0.27 (BoM) 0.18 0.42 (HMCR) 0.29

Week 5–8 regional 0.45 (BoM) 0.36 0.34 (HMCR) 0.28 0.34 (HMCR) 0.23 0.51 (HMCR) 0.36
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the BoM model shows best (lowest) CRPS in most daily

evaluation cases; also, for longer forecast lead time, the

CRPS for BoM does not increase as significantly as for

the other models. By examining the model configuration,

we found that the BoM precipitation product is of lower

spatial resolution compared to the rest of the models.

Since evaluations using other skill scores suggest no sig-

nificant advantage of BoM, we believe the low CRPS

for BoM is due to its low spatial resolution rather than

advantageous performance. On the other hand, the

ISAC-CNRmodel shows significant worse (higher) CRPS.

This is because the ISAC-CNR model provides deter-

ministic forecast with single ensemble member, while the

other models have multiple ensemble members. Results

here suggest the advantage of applying an ensemble fore-

cast rather than a deterministic forecast, especially for the

extended-range period. For the rest of the nine models,

which are of same spatial resolution, theCRPS-forecast lead

day curves show considerable overlap, with the ECMWF

model showing slightly better performance.

FIG. 4. The significance test result for regional average predictions in the four divisions for day 2, day 7, week 2,

and weeks 3–4. The rows represent the forecast period; the columns represent the geographic divisions. For each

matrix, the grid at row m, column n is labeled red if the r skill for the model at row m is better than the model at

column n at the 95% confidence level, and so on for other colored labels.
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Considering the evaluation results at different win-

dows of lead time, larger CRPS values are achieved for

larger evaluation time windows. This is because the

CRPS has the same dimension as the predictand and

is scaled up as the aggregated precipitation amount

increases with forecast time window width. In the online

supplemental material, we show the rescaled CRPS by

dividing the CRPS by the corresponding time window

width. Results show no apparent skill variation for dif-

ferent evaluation windows.

TABLE 3. Nash–Sutcliffe model efficiency of precipitation predictions (linearly bias corrected) at temporal interval scales.

Scale

SCA NCA OR WA

Best Mean Best Mean Best Mean Best Mean

Day 2 grid 0.51 (JMA) 0.39 0.49 (KMA) 0.41 0.5 (JMA) 0.35 0.54 (JMA) 0.4

Day 2 regional 0.77 (JMA) 0.59 0.69 (KMA) 0.54 0.67 (JMA) 0.5 0.72 (JMA) 0.58

Day 3–4 grid 0.61 (KMA) 0.48 0.62 (JMA) 0.5 0.55 (JMA) 0.44 0.61 (JMA) 0.49

Day 3–4 regional 0.77 (KMA) 0.65 0.74 (JMA) 0.63 0.7 (JMA) 0.58 0.79 (ECCC) 0.66

Day 5–8 grid 0.52 (Météo-France) 0.4 0.57 (ECMWF) 0.41 0.49 (ECMWF) 0.35 0.51 (ECMWF) 0.37

Day 5–8 regional 0.68 (ECMWF) 0.54 0.69 (ECMWF) 0.5 0.62 (ECMWF) 0.45 0.65 (ECMWF) 0.49

Week 2 grid 0.27 (ECMWF) 0.19 0.31 (ECMWF) 0.19 0.25 (ECMWF) 0.15 0.25 (ECMWF) 0.16

Week 2 regional 0.39 (ECMWF) 0.25 0.38 (ECMWF) 0.23 0.34 (ECMWF) 0.2 0.33 (ECMWF) 0.21

Week 3–4 grid 0.09 (BoM) 0.05 0.11 (ECMWF) 0.05 0.09 (Météo-France) 0.05 0.09 (ECMWF) 0.05

Week 3–4 regional 0.12 (ECMWF) 0.07 0.14 (ECMWF) 0.07 0.12 (Météo-France) 0.06 0.11 (ECMWF) 0.07

Week 4–6 grid 0.13 (BoM) 0.07 0.11 (ECMWF) 0.05 0.07 (ECMWF) 0.04 0.1 (ECMWF) 0.08

Week 4–6 regional 0.15 (BoM) 0.09 0.14 (ECMWF) 0.06 0.11 (ECMWF) 0.06 0.14 (BoM) 0.1

Week 5–8 grid 0.18 (KMA) 0.11 0.09 (HMCR) 0.06 0.08 (BoM) 0.05 0.19 (HMCR) 0.1

Week 5–8 regional 0.2 (BoM) 0.13 0.12 (HMCR) 0.08 0.11 (HMCR) 0.06 0.26 (HMCR) 0.14

FIG. 5. As in Fig. 3, but using Nash–Sutcliffe efficiency of ensemble mean predictions (linear bias corrected). For day-to-day evaluation,

the extent to which models have NSE . 0.2 is labeled.
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Overall, the CRPS evaluation results confirm the ad-

vantage of applying ensemble forecasts rather than de-

terministic forecasts, especially for the extended range.

However, the scaling issue of the CRPS restricts us from

comparing model performance differences at different

spatiotemporal scales.

5. The impacts of ENSO and MJO

Our evaluation results show a sharp drop in prediction

skill after week 1. Beyond this time range, predictions

rely heavily on the existence of sources of predictability

and the model’s ability to realize them as prediction

skill. In this section, we explore the impact of key

sources of intraseasonal to seasonal predictability on

precipitation distribution and prediction skill at the ex-

tended range. In particular, the focus is on ENSO and

the MJO.

a. ENSO

ENSO is a semiperiodic variation in winds and sea

surface temperatures over the tropical eastern Pacific

Ocean.Generally, it is represented by the corresponding

area’s sea surface temperature anomaly, as shown in

Fig. 8. ENSO influences the seasonal variability across

the tropical Pacific and in much of the extratropics,

including the North Pacific and North America. Pre-

cipitation anomalies in the regions along theWest Coast

are believed to be influenced by ENSO through its in-

fluence on the Aleutian low (Bjerknes 1969; Schonher

and Nicholson 1989) and subtropical jets (Rasmusson

and Wallace 1983; Trenberth et al. 1998). The connec-

tion has been investigated extensively using observa-

tions (Schonher and Nicholson 1989; Jong et al. 2016),

models (Wang et al. 2009; Dettinger 2011), and com-

posite approaches (Seager et al. 2015; Madadgar et al.

2016). However, results suggest that the connections,

such as the magnitude and sign of precipitation anom-

alies, are not robust (Yarnal and Diaz 1986).

In the following part of this section, we explore

ENSO’s impact on the precipitation distribution and

extended-range prediction skill. We focus on evalua-

tions at the weekly scale, as this is in accordance with the

rough time scale for the life cycle of cyclone events.

1) INFLUENCE ON PRECIPITATION DISTRIBUTION

To investigate the weekly precipitation statistics

conditioned on the ENSO phases, we first constructed

the wintertime weekly precipitation time series by av-

eraging precipitation records for consecutive 7-day

windows (from day 1 to day 7, from day 2 to day 8,

etc.). Next, we removed the impact of seasonal cycle by

FIG. 6. ROC curves for ECMWF regional precipitation predictions for the four regions at various windows of

lead time. The points with labeled numbers show the hit ratio and false alarm ratio of a corresponding threshold.

The ROC scores for different intervals are given in the inset tables.
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subtracting the leading two harmonics of the weekly se-

ries, using a fast Fourier transform (Welch 1967). Finally,

we constructed the empirical distribution of weekly precip-

itation anomalies conditioned on different ENSO phases

for early winter season [October–December (OND)], late

winter season [January–March (JFM)], and the entire win-

ter season [October–March (O–M)]. The distributions were

estimated using the smooth kernel method, built on 5000

bootstrap samples. Samples were selected randomly (with

replacement) fromweeklyprecipitationanomaly time series

for the corresponding season and ENSO phase.We applied

the Kolmogorov–Smirnov test to determine whether the

distributions differ significantly due to ENSO.

Figure 9 shows the empirical distributions of weekly

precipitation anomalies. In early winter (OND), the El

Niño phase tends to favor negative precipitation anom-

alies, while La Niña phase tends to favor positive pre-

cipitation anomalies. This pattern is more obvious for

NCA, OR, and WA, as compared to SCA. SCA has a

higher probability of receiving abnormally high pre-

cipitation events during La Niña, as shown in the tail of

the distribution. For NCA, there tends to be more

precipitation during ENSO-neutral phases, on average.

For OR and WA, there tends to be more precipitation

during La Niña.
In late winter (JFM), with the onset of the rainy season

in SCA,ENSO’s influence is flipped and strengthened. For

El Niño (La Niña) phases, SCA receives 0.35mmday21

more (0.3mmday21 less) precipitation than climatology.

For NCA, the El Niño phase also tends to favor more

precipitation, but the negative influence of La Niña is not

as obvious as it is for SCA. For OR, and WA, like early

winter, the La Niña phase tends to favor more pre-

cipitation compared to climatology; however, El Niño is

not accompanied by less precipitation, on average.

The last column shows the weekly precipitation

anomaly distribution for the entire winter season. As a

summary of the two cases analyzed above, we see that

during El Niño years, SCA tends to receive more pre-

cipitation, while NCA, OR, andWA tend to receive less

precipitation. During La Niña years, SCA tends to re-

ceive less precipitation while the others tend to receive

more. However, the variance for the distribution of

precipitation anomalies conditioned on ENSO phases is

FIG. 7. As in Fig. 3, but using the ROC score of ensemble precipitation predictions. For day-to-day evaluation, the extent to which models

have a ROC score . 0.6 is labeled.
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considerably large, making ENSO a less robust indicator

for precipitation predictions.

2) INFLUENCE ON PRECIPITATION PREDICTION

SKILLS

The previous section discussed ENSO’s influence on

weekly precipitation statistics. Ideally, we would like to

see these effects be well simulated in the GCMs. If so,

then realistic representation of ENSO in models could

facilitate useful boundary forcings in conditioning the pre-

cipitation distribution, and predictions at the extended

range could be improved.

To examine the influence of ENSO on extended-

range prediction skill, we first clustered the hindcast

cases by the ENSOphase at themodel’s start time. Next,

we computed and compared the prediction skills for the

different clusters. Four clusters were adopted here,

namely the ENSO active phase (El Niño/La Niña),
El Niño phase, La Niña phase, and ENSO-neutral

phase. Their union also was evaluated as a reference.

Sample sizes are listed in Fig. 8. Using the Fisher r-to-z

transformation (Fisher 1921), the correlation skills are

transformed to the z statistics, which are then applied

to assess the significance of the difference between two

r skills.

We focus on the regional average predictions for week

2 and weeks 3–4. Figure 10 shows the week 2 and weeks

3–4 r skills conditioned on different ENSO phases. The

NSE skill score and ROC score generally show similar

results and are not shown here. For the week 2 forecast

(column 1 of Fig. 10), in SCA, all 11 models show im-

proved r skill during the El Niño phase compared to

during the La Niña or ENSO-neutral phase, with 8 of

them showing better r skill to a 90% significance level

during El Niño compared to La Niña. Particularly, for

the better-performing models (i.e., ECCC and ECMWF),

r could differ by up to 0.2 comparing El Niño prediction

and La Niña prediction. Correspondingly, for OR, most

models show better r skill during La Niña phase com-

pared to during El Niño phase, with seven of them

showing better r skill to a 90% significance level during

La Niña compared to El Niño. For ECCC and ECMWF,

r could differ by up to 0.2 comparing La Niña prediction

and ElNiño prediction. ForNCAandWA, the results for

ENSO phase do not agree between the models, although

for NCA the better-performing models generally have

higher r skill scores during La Niña phase.

For the week 3–4 forecast (column 2 of Fig. 10), in

SCA more of the models have improved performance

during El Niño than during La Niña, with five of them

showing better r skill to a 90% significance level during

El Niño. For ECMWF, r is 0.42 for El Niño, whereas for
La Niña r is 0.24. The advantage for ECMWF also oc-

curs for NCA, with r being 0.46 during the El Niño
phase. This indicates that the El Niño phase might allow

better extended-range prediction for California. ForOR

and WA, most of the models show improved r skill

during La Niña when compared to El Niño, with five of

them showing better r skill to a 90% significance level

during La Niña compared to El Niño.

b. MJO

The MJO is a traveling pattern characterized by a

coherent eastward-propagating perturbation over the

tropical Indian and Pacific Oceans (Madden and Julian

1972). Previous studies have found that MJO-related

variability in the tropical Pacific convection modifies

West Coast precipitation regimes through the propa-

gation of extratropical wave trains (Mo and Higgins

1998; Higgins et al. 2000; Bond and Vecchi 2003).

TABLE 4. ROC score at temporal interval scales.

Scale

SCA NCA OR WA

Best Mean Best Mean Best Mean Best Mean

Day 2 grid 0.82 (KMA) 0.77 0.81 (NCEP) 0.8 0.81 (UKMO) 0.79 0.83 (JMA) 0.8

Day 2 regional 0.84 (ECCC) 0.82 0.85 (CMA) 0.83 0.84 (JMA) 0.82 0.88 (KMA) 0.86

Day 3–4 grid 0.86 (KMA) 0.79 0.85 (UKMO) 0.82 0.83 (KMA) 0.8 0.85 (KMA) 0.81

Day 3–4 regional 0.88 (KMA) 0.83 0.89 (KMA) 0.86 0.86 (ECMWF) 0.83 0.9 (KMA) 0.87

Day 5–8 grid 0.83 (KMA) 0.75 0.82 (UKMO) 0.78 0.81 (UKMO) 0.75 0.81 (UKMO) 0.75

Day 5–8 regional 0.86 (KMA) 0.8 0.86 (ECMWF) 0.81 0.85 (UKMO) 0.79 0.86 (UKMO) 0.8

Week 2 grid 0.71 (KMA) 0.66 0.71 (UKMO) 0.67 0.68 (UKMO) 0.64 0.68 (UKMO) 0.64

Week 2 regional 0.74 (KMA) 0.69 0.74 (UKMO) 0.69 0.71 (ECMWF) 0.67 0.72 (KMA) 0.67

Week 3–4 grid 0.59 (ISACCNR) 0.56 0.58 (KMA) 0.56 0.57 (UKMO) 0.55 0.58 (NCEP) 0.56

Week 3–4 regional 0.61 (ISACCNR) 0.57 0.61 (KMA) 0.57 0.6 (UKMO) 0.57 0.61 (KMA) 0.58

Week 4–6 grid 0.59 (KMA) 0.57 0.57 (ECMWF) 0.55 0.56 (UKMO) 0.54 0.6 (NCEP) 0.56

Week 4–6 regional 0.6 (KMA) 0.58 0.59 (ECMWF) 0.57 0.59 (UKMO) 0.56 0.63 (NCEP) 0.58

Week 5–8 grid 0.63 (KMA) 0.6 0.58 (UKMO) 0.57 0.58 (UKMO) 0.54 0.62 (UKMO) 0.57

Week 5–8 regional 0.64 (KMA) 0.61 0.6 (CMA) 0.58 0.61 (UKMO) 0.55 0.66 (UKMO) 0.6
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Provided with a realistic representation of the MJO and

its teleconnections, this forecast opportunity could be

realized as improvements in models’ extended-range

prediction skills. However, it is also noted that poor

representation results in systematic worsened forecast

during the MJO active periods, as compared to quies-

cent periods (Chen et al. 1993; Hendon et al. 2000).

The prediction skill for the MJO and its teleconnections

have been improved significantly in recent decades,

reaching a useful forecast range beyond 20 days (Kang

and Kim 2010; Wang et al. 2014; Lim et al. 2018) and

producing realistic teleconnections with the large-scale

circulation (Vitart and Molteni 2010). Here, we make a

dedicated examination of how MJO modifies precip-

itation distribution and extended-range prediction skills

for the West Coast.

To quantify the MJO, The Real-Time Multivariate

MJO Index is adopted. As shown in Fig. 11, the RMM

index is composed of the two leading PCs of the field

that combines average outgoing longwave radiation and

zonal wind at 850 and 200 hPa from 158S to 158N
(Wheeler and Hendon 2004). We define active MJO

events using the criteria of Bond and Vecchi (2003):

1) there should be at least 30 days during which the

amplitude (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC2

1 1PC2
2

q
) exceeds 0.5 [for Bond and

Vecchi (2003), the threshold is 0.7 for U850hPa field

PCs], and

2) the MJO phase [tanh21(PC1/PC2)] should move

eastward for the entire period.

The detected active MJO events also are displayed in

Fig. 11. Based on this classification, we explore theMJO’s

impact on precipitation distribution and extended-range

prediction skill below.

1) INFLUENCE ON PRECIPITATION DISTRIBUTION

To investigate the MJO’s influence on precipitation

distribution, we follow the method in Mundhenk et al.

(2018) to examine the average weekly precipitation

anomalies conditioned on the MJO status. The method

is described as follows. We first derived the weekly pre-

cipitation anomalies using same approach in section 5a(1).

Next, for the early/latewinter season and thewholewinter

season, we clustered the weekly precipitation anomalies

based on the MJO status. Both the MJO phase and the

lag days after the MJO phase are considered for con-

straining precipitation anomalies, since it takes time for

theMJO-related variability to exert influence. Finally, we

computed themean value of the clusters and drew them in

Fig. 12.

The most obvious pattern in Fig. 12 is the angled bands

of precipitation anomalies, which generally stretch from

top right to bottom left, following the MJO phase

transitions. For instance, in late winter (JFM), ab-

normally high precipitation favors WA at week 2

following the onset of an activeMJO event from phase

1. The enhanced and suppressed precipitation bands

are separated more distinctly for NCA, OR, and WA

as compared to SCA. A comparison between results

for early winter season (column 1) and late winter

season (column 2) shows that the phases of the MJO

that promote enhanced or suppressed precipitation

are substantially different during these two seasons.

This is in agreement with the findings of Bond and

Vecchi (2003).

Generally, results confirmed the impact of the MJO

onmodulating precipitation regimes for theWest Coast,

especially for NCA,OR, andWA. The time lag forMJO

FIG. 8. (left) Definition and time series plot of ENSO. ENSO is quantified based on the SSTA of certain Pacific tropical regions, as

delineated on the top right. The time series plot for Niño indexes from 1978 to 2016 is shown. To investigate ENSO impact on extended-

range prediction skill, hindcasts for each model are clustered into different groups based on the ENSO phase at model start time. (right)

Case counts for each cluster.
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to manifest its effects provides valuable potential for

extending the range of skillful predictions.

2) INFLUENCE ON PRECIPITATION PREDICTION

SKILLS

To investigate the impact of theMJO on precipitation

prediction skills, we first grouped the hindcast cases for

each GCM according to their start-time MJO status.

Five groups are adopted here following Jones et al.

(2015): phases 1–2, phases 3–4, phases 5–6, and phases

7–8 for the active MJO period, as well as the MJO

quiescent period. The sample size is listed in Fig. 11.

Next, we evaluated the week 2 and week 3–4 prediction

skill for each group. The statistical significance of r skill

differences between MJO-active groups and MJO-

quiescent group were determined using the z test. Re-

sults for r skills and significant tests are shown in Fig. 13.

While results confirmed the former findings that the

prediction skill varies for different MJO groups and

models (Matsueda and Endo 2011), there are some

common patterns here. First, for hindcasts initialized

during active MJO in phases 3–4, most models show

FIG. 9. Distribution of weekly precipitation anomalies conditioned on ENSOphases. (left) The early winter season (OND); (center) the

late winter season (JFM); (right) the entire winter season (O–M). The rows represent results for different geographic divisions. For each

panel, we listed the mean and variance of the distribution conditioned on ENSO phases. The comparison between two distributions is

labeled with an asterisk if the Kolmogorov–Smirnov statistic lies out of the 90% or 95% confidence interval, indicating the two distri-

butions are statistically significantly different.
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lower extended-range prediction skills as compared to

MJO-quiescent cases, except for the week 2 prediction in

SCA. This skill drop was also found in Jones et al. (2015)

when studying the impact of the MJO on intraseasonal

predictability in the midlatitudes of the Northern Hemi-

sphere. The skill drop might be attributed to the fact that

many models cannot represent well the propagation of

the MJO across the Maritime Continent (Lin et al. 2008;

Vitart and Molteni 2010; Wang et al. 2014). If so, models

cannot produce the MJO-associated extratropical response

revealed in Fig. 12, resulting in systematic forecast biases.

Second, for hindcasts initialized during active MJO in

FIG. 10. (left) Week 2 and (right) week 3–4 precipitation prediction skills for different ENSO phases. The rows

represent results for the four geographic divisions. For each subfigure, 11 models are evaluated; each model is

colored depending on the phase in which model has highest score. Models with a significant r skill difference

betweenElNiño andLaNiña phases are framed: a red (blue) frame indicates thatmodel shows significantly better r

skill for El Niño (La Niña) phase based on the z test, and a light (dark) frame indicates the difference is statistically

significant at the 90% (95%) confidence level.
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phases 1–2, phases 5–6, and phases 7–8, forecasts from the

better-performing models (i.e., ECCC, ECMWF, Météo-
France, andUKMO) are generallymore skillful compared

to MJO-quiescent cases. For instance, for SCA and NCA,

the prediction skill during active MJO in phases 1–2 and

phases 7–8 is generally higher than inMJO-quiescent days;

for OR andWA, the prediction skill during active MJO in

phases 5–6 and phases 7–8 is generally higher than inMJO-

quiescent days.

6. Discussion and conclusions

We evaluated the precipitation prediction skills at the

short to extended range for the West Coast, where

precipitation variation significantly influences the local

ecology and economy. The evaluation is based on the

extended-range hindcast dataset of the WWRP–WCRP

S2S project. For the 11 models used here, the hindcast

sample size ranges from 240 to 3822 across more than

20 winters, covering various climate circumstances cat-

egorized by intraseasonal to seasonal variability. This

guarantees that the evaluation is less prone to biases

from limited sample size or model diversity.

Since there is inevitable deviation of prediction along

forecast lead time, the evaluation is implemented at

both stringent and loosened spatial temporal scales,

measured by both deterministic scores (r and NSE) and

probabilistic scores (ROC and CRPS). We further ex-

amined the impact of extended-range predictability

sources, focusing on ENSO and the MJO. Our key

findings are listed as follows:

1) We investigated the S2S models’ prediction skill–

forecast lead time relationship for the four divisions

in the West Coast.
d For week 1, the S2S models show advantageous

precipitation prediction skills. The r, NSE, andROC

scores are approximately of the order of 0.8, 0.7, and

FIG. 11. (top left) The leading two PCs of the field that combines average outgoing longwave radiation and zonal wind at 850 and

200 hPa from 158S to 158N. The phase and amplitude ofMJO are defined based on the position of (PC1, PC2) and its distance to the origin.

For instance, the red arrowed line represents anMJOevent that starts from 7 Sep 1979, goes counterclockwise (eastwardwhen reprojected

to geographic map), and ends on 24 Oct 1979. On most days, (PC1, PC2) lies out of the middle circle, whose radius is 1, indicating a strong

MJO event. (bottom) The time series of MJO amplitude, as represented by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC2

1 1PC2
2

q
. Active MJO events are labeled with red lines.

(top right) Hindcasts for 11 GCMs are labeled as ‘‘MJO Active’’ and grouped into corresponding clusters if the start time is within an

active MJO period.

1 JANUARY 2019 PAN ET AL . 177

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/18/23 07:58 PM UTC



0.8, respectively, for this period. By spatial averag-

ing, the skill score can be further improved.
d For week 2,models show large variations regarding

their performances. The week-2 mean precipita-

tion forecast from the best-performing model (i.e.,

ECMWF) is of considerable value, with r . 0.6,

NSE . 0.35, and ROC score . 0.7.
d Beyond week 2, predictions generally provide little

deterministic skill. For this range period, probabi-

listic evaluation of ensemble forecasts using the

CRPS shows the significant advantage of ensemble

forecasts over deterministic forecast.
d Considering the performance difference of the S2S

models, the informative predictable range may

differ by up to 6–7 days comparing different

models. For the short range, models with higher

resolution tend to have better performances (JMA,

KMA, ECCC, and ECMWF). For the medium

to extended range, ensemble mean predictions

show significant better performance compared to

deterministic predictions. The best-performing

models for this range period are the ECCC,

ECMWF, and JMA models. For the week 3–4

forecast, although there is essentially no useful

deterministic forecast skill, the ECMWF model

still shows an advantage over the rest of the

models. Results here can benefit model selec-

tions for practical forecasts and multimodel

ensemble predictions.

2) Through investigating the impact of ENSO on the

West Coast precipitation distribution and models’

prediction skill, we found a spatial seesaw effect for

ENSO to modulate precipitation distribution and

GCMs’ prediction skills:
d During El Niño years, Southern California tends to

receive more precipitation in late winter, as com-

pared to La Niña years. Also, we found that most

models show significantly better extended-range

prediction skills in El Niño years, as compared to

La Niña years.

FIG. 12. Mean value of weekly precipitation anomalies conditioned on active MJO events’ phase and number of days after MJO phase.

The four rows represent results for four geographic divisions, and the columns represent results for different seasons. In each subfigure, the

grid color represents themean weekly precipitation anomalies for daym afterMJOphase n; herem ranges fromday 1 to day 21, as labeled

on the x axis, and n ranges from phase 1 to phase 8, as labeled on the y axis.
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d During La Niña years, Oregon tends to receive more

precipitation in the winter season, as compared to El

Niño years. Also, we found that most models show

significantly better extended-range prediction skills

in La Niña years, as compared to El Niño years.

For Northern California and Washington, ENSO

influences the precipitation distribution, but specific

models may either have higher or lower prediction

skills depending on the ENSO phases. We assume the

excessive precipitation and improved extended-range

prediction skills accompany the meridional shift of

baroclinic systems as modulated by ENSO. This pre-

dictability difference related to ENSO phases will be

useful for extended-range prediction applications.

3) We investigated the impact of the MJO on theWest

Coast precipitation distribution and GCMs’ pre-

diction skills.

d Regarding the impact of MJO on precipitation

distributions, we examined the average precipita-

tion anomalies conditioned on theMJOphases and

days after MJO phases. Results show a systematic

below/above climatology precipitation pattern fol-

lowing certain MJO phases at corresponding lead

time. The time lag for MJO to manifest its effects

provides valuable potential for skillful predictions

at the extended range.
d Regarding the impact of the MJO on GCMs’

extended-range precipitation prediction skills, we

verified that for certain MJO phases (especially,

phases 5–6 and 7–8), some S2S models can capture

the MJO-associated teleconnection in improving

week 3–4 prediction skills. However, for hindcasts

initialized during active MJO in phases 3–4, many

models show lower extended-range prediction skills

FIG. 13. (first row)Week 2 and (third row) week 3–4 r skills for differentMJO groups. (second row)Week 2 and (fourth row) week 3–4 z

statistics of differences between r skills for MJO-active groups and MJO-quiescent group, and the dashed (solid) grid lines indicate

statistical difference at the 90% (95%) confidence level.
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as compared toMJO-quiescent cases, suggesting that

the forecast opportunitymay also be a curse ifmodels

have deficiencies in capturing its influences.

Results here suggest the potential for predictability

across a range of time scales (Hoskins 2013; Zhu et al.

2014). We hope the baseline provided here can foster

practical subseasonal prediction applications and facili-

tate further research on improving midlatitude sub-

seasonal precipitation forecasts.
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